Speech disfluency detection with the correlative method
نویسندگان
چکیده
The presented work constitutes a continuation of research on automatic disfluency recognition in utterances by stuttering people. One of the most frequently occurring episodes are syllable repetitions. The repeated fragments have a similar spectral structure, but they differ in their duration times. In order to detect them, correlation of 1/3 octave spectra was applied in connection with the procedures analysing the amplitude-time structure of sound files. The elaborated computer programme allows for recognition of that type of difluency in continuous speech and for exact, graphically illustrated location of the detected episodes in a sound file. It has been verified on the basis of over a hundred 4-second non-fluent utterances. Its functioning has been examined at various border values of the correlation co-efficient and various widths of the time window. Over 70% efficiency of the automatic detection of the episodes has been achieved. The result is comparable to those achieved with the use of the audio monitoring method.
منابع مشابه
Joint Transition-based Dependency Parsing and Disfluency Detection for Automatic Speech Recognition Texts
Joint dependency parsing with disfluency detection is an important task in speech language processing. Recent methods show high performance for this task, although most authors make the unrealistic assumption that input texts are transcribed by human annotators. In real-world applications, the input text is typically the output of an automatic speech recognition (ASR) system, which implies that...
متن کاملA prosody only decision-tree model for disfluency detection
Speech disfluencies (filled pauses, repetitions, repairs, and false starts) are pervasive in spontaneous speech. The ability to detect and correct disfluencies automatically is important for effective natural language understanding, as well as to improve speech models in general. Previous approaches to disfluency detection have relied heavily on lexical information, which makes them less applic...
متن کاملEfficient Disfluency Detection with Transition-based Parsing
Automatic speech recognition (ASR) outputs often contain various disfluencies. It is necessary to remove these disfluencies before processing downstream tasks. In this paper, an efficient disfluency detection approach based on right-to-left transitionbased parsing is proposed, which can efficiently identify disfluencies and keep ASR outputs grammatical. Our method exploits a global view to capt...
متن کاملUsing machine learning to cope with imbalanced classes in natural speech: evidence from sentence boundary and disfluency detection
We investigate machine learning techniques for coping with highly skewed class distributions in two spontaneous speech processing tasks. Both tasks, sentence boundary and disfluency detection, provide important structural information for downstream language processing modules. We examine the effect of data set size, task, sampling method (no sampling, downsampling, oversampling, and ensemble sa...
متن کاملA Lexically-Driven Algorithm for Disfluency Detection
This paper describes a transformationbased learning approach to disfluency detection in speech transcripts using primarily lexical features. Our method produces comparable results to two other systems that make heavy use of prosodic features, thus demonstrating that reasonable performance can be achieved without extensive prosodic cues. In addition, we show that it is possible to facilitate the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annales UMCS, Informatica
دوره 3 شماره
صفحات -
تاریخ انتشار 2005